วันพุธที่ 17 กุมภาพันธ์ พ.ศ. 2559

บทที่3

บทที่ 3 ความน่าจะเป็น


สำหรับหนังสือรางวัลซีไรต์ ดูที่ ความน่าจะเป็น (เรื่องสั้น)
ความน่าจะเป็น คือการวัดหรือการประมาณความเป็นไปได้ว่า บางสิ่งบางอย่างจะเกิดขึ้นหรือถ้อยแถลงหนึ่ง ๆ จะเป็นจริงมากเท่าใด ความน่าจะเป็นมีค่าตั้งแต่ 0 (โอกาส 0% หรือ จะไม่เกิดขึ้น) ไปจนถึง 1 (โอกาส100% หรือ จะเกิดขึ้น) [1] ระดับของความน่าจะเป็นที่สูงขึ้น คือความเป็นไปได้มากขึ้นที่เหตุการณ์นั้นจะเกิด หรือถ้ามองจากเงื่อนเวลาของการสุ่มตัวอย่าง คือจำนวนครั้งมากขึ้นที่เหตุการณ์เช่นนั้นคาดหวังว่าจะเกิด


มโนทัศน์เหล่านี้มาจากการแปลงคณิตศาสตร์เชิงสัจพจน์ในทฤษฎีความน่าจะเป็น ซึ่งใช้กันอย่างแพร่หลายในขอบเขตการศึกษาต่าง ๆ เช่น คณิตศาสตร์ สถิติศาสตร์ การเงิน การพนัน วิทยาศาสตร์ ปัญญาประดิษฐ์/การเรียนรู้ของเครื่อง และปรัชญา เพื่อร่างข้อสรุปเกี่ยวกับความถี่ที่คาดหวังของเหตุการณ์ต่าง ๆ เป็นอาทิ ทฤษฎีความน่าจะเป็นก็ยังนำมาใช้เพื่ออธิบายกลไกรากฐานและความสม่ำเสมอของระบบซับซ้อน

อ่านต่อ

บทที่2

บทที่ 2 อัตราส่วนตรีโกณมิติ

อัตราส่วนตรีโกณมิติ

อัตราส่วนตรีโกณมิติ
คำว่า “ตรีโกณมิติ” ตรงกับคำ ภาษาอังกฤษ “Trigonometry” หมายถึง การวัด รูปสามเหลี่ยมได้มีการนำความรู้วิชาตรีโกณมิติไปใช้ในการหาระยะทาง พื้นที่ มุม และทิศทางที่ยากแก่การวัดโดยตรง เช่น การหาความสูงของภูเขา การหาความกว้างของแม่น้ำ เป็นต้น              จากรูปสามเหลี่ยมมุมฉาก ABC ที่มีมุม C เป็นมุมฉาก


เมื่อพิจารณามุม A
BC เรียกว่า ด้านตรงข้ามมุม A ยาว a หน่วย
CA เรียกว่า ด้านประชิดมุม  A ยาว b หน่วย
AB เรียกว่า ด้านตรงข้ามมุมฉาก ยาว c หน่วย

เมื่อพิจารณามุม B
AC เรียกว่า ด้านตรงข้ามมุม B ยาว b หน่วย
CB เรียกว่า ด้านประชิดมุม B ยาว a หน่วย


BA เรียกว่า ด้านตรงข้ามมุมฉาก ยาว c หน่วย

บทที่1

บทที่ 1 เลขยกกำลัง

รากที่ ของจำนวนจริงบทนิยาม ให้ a , b เป็นจำนวนจริง และ เป็นจำนวนเต็มบวกที่มากกว่า 1
เป็นรากที่ ของ ก็ต่อเมื่อ bกำลัง n = a
เป็นจำนวนคู่
เป็นจำนวนคี่
1. รากที่ ของ จะหาค่าได้ ก็ต่อเมื่อ a ≥เท่านั้น
2. ถ้า a = o แล้ว รากที่ ของ a = 0
3. ถ้า a > 0 แล้วรากที่ ของ จะมี 2 จำนวน จำนวนหนึ่งเป็นบวกและอีกจำนวนหนึ่งเป็นลบ
4. ถ้า a < 0แล้ว ไม่สามารถหารากที่ ของ ได้ในระบบจำนวนจริง
1. รากที่ ของ จะหาค่าได้เสมอ สำหรับจำนวนจริง ทุกจำนวน
2. ถ้า a = o แล้ว รากที่ ของ a = 0
3. ถ้า a > 0 แล้ว รากที่ ของ จะมีเพียงจำนวนเดียว และเป็นจำนวนจริงบวก
4. ถ้า a < 0 แล้ว รากที่ ของ จะมีเพียงจำนวนเดียว และเป็นจำนวนจริงลบ

ตัวอย่าง
1) รากที่ 4 ของ 625 คือ 5 และ – 5
ทั้งนี้เพราะ 5 กำลัง 4 = 625 และ (-5)กำลัง4 = 625
2) รากที่ 6 ของ 729 คือ 3 และ – 3
ทั้งนี้เพราะ 3กำลัง 6 = 729 และ(-3)กำลัง 6 = 729
3) รากที่ 5 ของ 1,024 คือ 4
ทั้งนี้เพราะ 4กำลัง5 = 1,024
4) รากที่ 7 ของ – 128 คือ – 2
ทั้งนี้เพราะ (-2) กำลัง 7 = – 128

คณิต

อดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้างการเปลี่ยนแปลง, และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์
คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ. คำนี้ตรงกับคำภาษาอังกฤษว่า mathematics มาจากคำภาษากรีก μάθημα(máthema) แปลว่า "วิทยาศาสตร์, ความรู้, และการเรียน" และคำว่า μαθηματικός (mathematikós) แปลว่า "รักที่จะเรียนรู้". ในอเมริกาเหนือนิยมย่อ mathematics ว่า math ส่วนประเทศอื่น ๆ ที่ใช้ภาษาอังกฤษนิยมย่อว่า maths
ความรู้ทางด้านคณิตศาสตร์เพิ่มขึ้นอย่างสม่ำเสมอ ผ่านทางการวิจัยและการประยุกต์ใช้ คณิตศาสตร์เป็นเครื่องมืออันหนึ่งของวิทยาศาสตร์ อย่างไรก็ตาม การคิดค้นทางคณิตศาสตร์ไม่จำเป็นต้องมีเป้าหมายอยู่ที่การนำไปใช้ทางวิทยาศาสตร์ (ดู คณิตศาสตร์บริสุทธิ์ และคณิตศาสตร์ประยุกต์)
โครงสร้างต่าง ๆ ที่นักคณิตศาสตร์สนใจและพิจารณานั้น มักจะมีต้นกำเนิดจากวิทยาศาสตร์ธรรมชาติ และสังคมศาสตร์ โดยเฉพาะฟิสิกส์ และเศรษฐศาสตร์. ปัญหาทางคณิตศาสตร์ในปัจจุบัน ยังเกี่ยวข้องกับการประยุกต์ใช้ในสาขาวิทยาการคอมพิวเตอร์ และทฤษฎีการสื่อสาร อีกด้วย
เนื่องจากคณิตศาสตร์นั้นใช้ตรรกศาสตร์สัญลักษณ์และสัญกรณ์คณิตศาสตร์ ซึ่งทำให้กิจกรรมทุกอย่างกระทำผ่านทางขั้นตอนที่ชัดเจน เราจึงสามารถพิจารณาคณิตศาสตร์ว่า เป็นระบบภาษาที่เพิ่มความแม่นยำและชัดเจนให้กับภาษาธรรมชาติ ผ่านทางศัพท์และไวยากhttps://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C